認(rèn)識(shí)疲勞
疲勞是材料(金屬)承受循環(huán)應(yīng)力或應(yīng)變作用時(shí),蛭石隔熱管托結(jié)構(gòu)性能下降,并最終導(dǎo)致破壞的現(xiàn)象。疲勞失效是最常見(jiàn)的失效形式之一。根據(jù)文獻(xiàn)提供的數(shù)據(jù)顯示,各種機(jī)械中,疲勞失效的零件占失效零件的60~70%。疲勞斷裂失效原則上屬于低應(yīng)力脆斷失效,疲勞中難以觀察到明顯的塑性變形,因?yàn)檫@是以局部塑性變形為主,且主要發(fā)生在結(jié)構(gòu)的固有缺陷上。雖然頻率對(duì)疲勞失效有一定影響,但多數(shù)情況下疲勞失效主要與循環(huán)次數(shù)有關(guān)。
● 按引起疲勞失效的應(yīng)力特點(diǎn)可以分為:由機(jī)械應(yīng)力引起的機(jī)械疲勞和熱應(yīng)力(交變熱應(yīng)力)引起的熱疲勞;
● 從循環(huán)周次可分為: 高周、低周、超高周疲勞;
● 根據(jù)載荷性質(zhì)可分為:拉-壓疲勞、扭轉(zhuǎn)疲勞以及彎曲疲勞等;
● 根據(jù)工件的工作環(huán)境可分為:腐蝕疲勞、低溫疲勞、高溫疲勞。
一般把材料與結(jié)構(gòu)發(fā)生疲勞損傷前的強(qiáng)度定義為“疲勞極限”。
01 沖擊疲勞
是指重復(fù)沖擊載荷所引起的疲勞。當(dāng)蛭石隔熱管托沖擊次數(shù)N小于500~1000次即破壞時(shí),零件的斷裂形式與一次沖擊相同;當(dāng)沖擊次數(shù)大于105次時(shí)的破壞,零件斷裂屬于疲勞斷裂,并具有典型的疲勞斷口特征。在設(shè)計(jì)計(jì)算中,當(dāng)沖擊次數(shù)大于100次時(shí),用類(lèi)似于疲勞的方法計(jì)算強(qiáng)度。
02 接觸疲勞
零件在循環(huán)接觸應(yīng)力作用下產(chǎn)生局部永久性累計(jì)損傷,經(jīng)過(guò)一定循環(huán)次數(shù)后,接觸表面發(fā)生麻點(diǎn)、淺層或深層剝落的過(guò)程,稱(chēng)為接觸疲勞。接觸疲勞是齒輪、滾動(dòng)軸承和凸輪軸的典型失效形式。
03熱疲勞
由于溫度循環(huán)產(chǎn)生循環(huán)熱應(yīng)力所導(dǎo)致的材料或零件的疲勞稱(chēng)為熱疲勞。溫度循環(huán)變化導(dǎo)致材料體積循環(huán)變化,當(dāng)材料的自由膨脹或收縮受到約束時(shí),產(chǎn)生循環(huán)熱應(yīng)力或循環(huán)熱應(yīng)變。
產(chǎn)生熱應(yīng)力情況主要有兩種:
?零件的熱脹冷縮受到固持零件的外加約束而產(chǎn)生熱應(yīng)力;
?雖然沒(méi)有外加約束,但兩件各部分的溫度不一致,存在著溫度梯度,導(dǎo)致各部分熱脹冷縮不一致而產(chǎn)生熱應(yīng)力。
溫度交變作用,除了產(chǎn)生熱應(yīng)力外,還會(huì)導(dǎo)致材料內(nèi)部組織變化,使強(qiáng)度和塑性降低。熱疲勞條件下的溫度分布不是均勻的,在溫度梯度大的地方,塑性變形嚴(yán)重,熱應(yīng)變集中較大;當(dāng)熱應(yīng)變超過(guò)彈性極限時(shí),熱應(yīng)力與熱應(yīng)變就不呈線性關(guān)系,此時(shí)求解熱應(yīng)力就要按彈塑性關(guān)系處理。熱疲勞裂紋從表面開(kāi)始向內(nèi)部擴(kuò)展,方向與表面垂直。
熱應(yīng)力的大小與熱脹系數(shù)成正比,熱脹系數(shù)越大,熱應(yīng)力越大。所以在選材時(shí)要考慮材料的匹配,即不同材料熱膨脹系數(shù)的差別不能太大。蛭石隔熱管托在相同的熱應(yīng)變條件下,材料的彈性模量越大,熱應(yīng)力就越大;溫度循環(huán)變化越大,即上下限溫差越大,則熱應(yīng)力就越大;材料的熱導(dǎo)率越低,則快速加速或冷卻過(guò)程中,溫度梯度越陡,熱應(yīng)力也越大。
04 腐蝕疲勞
腐蝕介質(zhì)和循環(huán)應(yīng)力(應(yīng)變)的復(fù)合作用所導(dǎo)致的疲勞稱(chēng)為腐蝕疲勞。腐蝕介質(zhì)與靜應(yīng)力共同作用產(chǎn)生的腐蝕破壞稱(chēng)為應(yīng)力腐蝕。兩者的區(qū)別在于,應(yīng)力腐蝕只有在特定的腐蝕環(huán)境中才發(fā)生,而腐蝕疲勞在任何腐蝕環(huán)境及循環(huán)應(yīng)力復(fù)合作用下,都會(huì)發(fā)生腐蝕疲勞斷裂。應(yīng)力腐蝕開(kāi)裂,有一個(gè)臨界應(yīng)力強(qiáng)度因子KISCC,當(dāng)應(yīng)力強(qiáng)度因子KI≤KISCC,就不會(huì)發(fā)生應(yīng)力腐蝕開(kāi)裂;而腐蝕疲勞不存在臨界應(yīng)力強(qiáng)度因子,只要在腐蝕環(huán)境中有循環(huán)應(yīng)力繼續(xù)作用,斷裂總是會(huì)發(fā)生的。
腐蝕疲勞與空氣中的疲勞區(qū)別在于,腐蝕疲勞過(guò)程中,除不銹鋼和滲氮鋼以外,機(jī)械零部件表面均變色。腐蝕疲勞形成的裂紋數(shù)目較多,即呈多裂紋。腐蝕疲勞的S-N曲線沒(méi)有水平部分,因此,對(duì)于腐蝕疲勞極限,一定要指出是某一壽命下的值,即只存在條件腐蝕疲勞極限。影響腐蝕疲勞強(qiáng)度的因素要比空氣中疲勞多而且復(fù)雜,如在空氣中,疲勞試驗(yàn)頻率小于1000HZ時(shí),頻率基本上對(duì)疲勞極限沒(méi)有影響,但腐蝕疲勞在頻率的整個(gè)范圍內(nèi)都有影響。
疲勞壽命
當(dāng)一個(gè)材料或機(jī)械部件失效時(shí),總壽命通常由三部分組成:
01 裂紋萌生壽命,大量工程實(shí)踐表明,蛭石隔熱管托實(shí)際服役過(guò)程中機(jī)械部件裂紋的萌生壽命占據(jù)疲勞壽命的絕大部分(甚至達(dá)到總壽命的90%)。
02 裂紋穩(wěn)定擴(kuò)展壽命,多數(shù)情況下,當(dāng)一條微裂紋的深度達(dá)到該尺寸(約為0.1mm)時(shí),它就沿著材料或者部件的截面穩(wěn)定擴(kuò)展。
03 失穩(wěn)擴(kuò)展至斷裂壽命。
金屬材料的疲勞形式
金屬材料的疲勞主要有以下幾種:
一般的塑性變形;
低周疲勞下的塑性變形;
高周疲勞下的塑性變形;
超高周疲勞下晶立尺寸的微觀塑性變形。
影響材料與結(jié)構(gòu)疲勞強(qiáng)度的因素
01 平均應(yīng)力
隨著平均應(yīng)力(統(tǒng)計(jì)應(yīng)力)的增加,材料的動(dòng)態(tài)抗疲勞應(yīng)力降低。對(duì)于同一屬性的力,平均應(yīng)力σm越大,則給定壽命的應(yīng)力幅σa就越小。
02 應(yīng)力集中
由于工作條件或加工工藝的要求,零件常帶有臺(tái)階、小孔、鍵槽等,使截面發(fā)生突然變化,從而引起局部的應(yīng)力集中,這將顯著地降低材料的疲勞極限,但實(shí)驗(yàn)表明,疲勞極限降低的程度并不是與應(yīng)力集中系數(shù)成正比。但如果要準(zhǔn)確地預(yù)測(cè)機(jī)械部件的疲勞行為,就必須估計(jì)高應(yīng)力區(qū)或者含制造缺陷的裂紋萌生壽命。
03 殘余應(yīng)力
文獻(xiàn)研究指出,探討殘余應(yīng)力對(duì)金屬疲勞強(qiáng)度的影響,需在高周疲勞下才有意義,因?yàn)榈椭芷诘母邞?yīng)變幅下殘余應(yīng)力將大幅度地松弛,所以在低周疲勞下顯示不出多大的作用。表層殘余壓應(yīng)力對(duì)于承受軸向載荷且疲勞裂紋起源于表面的零部件是有益的,但要注意核心部區(qū)域的殘余拉應(yīng)力疊加外載后發(fā)生屈服所引起的殘余應(yīng)力松弛問(wèn)題。殘余應(yīng)力對(duì)零件缺口疲勞強(qiáng)度的作用十分顯著,這是由于殘余應(yīng)力也存在應(yīng)力集中現(xiàn)象和殘余應(yīng)力對(duì)疲勞裂紋擴(kuò)展的影響更大的緣故。但蛭石隔熱管托殘余應(yīng)力的應(yīng)力集中不僅與缺口幾何因素有關(guān),還與材料特性有關(guān)。
04 尺寸效應(yīng)
材料的疲勞極限σ-1值通常是用小試樣測(cè)定的,試樣直徑一般在7~12mm,而實(shí)際構(gòu)件的截面往往大于該尺寸。試驗(yàn)指出,隨著試樣直徑的加大,疲勞極限下降。其中,強(qiáng)度高的鋼比強(qiáng)度低的鋼下降的快。
05 構(gòu)件表面狀態(tài)
構(gòu)件表面是疲勞裂紋核心易于產(chǎn)生的地方,而承受交變彎曲或交變扭轉(zhuǎn)負(fù)荷的構(gòu)件,表面應(yīng)力最大。構(gòu)件表面的粗糙度、機(jī)械加工的刀痕都會(huì)影響疲勞強(qiáng)度。表面損傷(刀痕、磨痕等)本身就是表面缺口,會(huì)產(chǎn)生應(yīng)力集中,使其疲勞極限降低,且材料強(qiáng)度越高,缺口敏感性越顯著,加工表面質(zhì)量對(duì)疲勞極限的影響就越大。
06 環(huán)境因素
金屬材料的疲勞性能還受到周?chē)合嗷驓庀嗟拳h(huán)境的影響。腐蝕疲勞是指金屬材料在腐蝕介質(zhì)和循環(huán)載荷交互作用下的響應(yīng),它通常多用于描述水相環(huán)境下材料的疲勞行為。腐蝕疲勞、低溫疲勞、高溫疲勞,不同氣壓環(huán)境、濕度環(huán)境等都是材料與環(huán)境因素共同作用下的疲勞現(xiàn)象。
在大氣環(huán)境下,同一材料的破壞循環(huán)周次也遠(yuǎn)低于真空環(huán)境。真空環(huán)境中的裂紋萌生壽命遠(yuǎn)大于大氣環(huán)境。當(dāng)工件工作環(huán)境壓力接近Pcr(壽命拐點(diǎn)處的氣壓定義為臨界氣壓)時(shí),材料的疲勞壽命就變得異常敏感。大氣環(huán)境中材料的疲勞壽命(一般低于真空環(huán)境)會(huì)隨著溫度的升高而降低,加速裂紋擴(kuò)展。環(huán)境濕度對(duì)高強(qiáng)度鉻鋼的耐久性影響較大。水汽(尤其是室溫環(huán)境)對(duì)多數(shù)蛭石隔熱管托用金屬及合金的抗斷裂性能有不利影響,這種不利影響取決于應(yīng)力水平、載荷比、幅值等加載條件。微觀組織與環(huán)境之間具有強(qiáng)烈的相互作用,氣相環(huán)境顯著影響著斷口的形貌和位錯(cuò)滑移機(jī)制,環(huán)境與裂紋閉合之間存在著交互作用,尤其在近門(mén)檻區(qū)。環(huán)境影響程度取決于裂紋面的形貌,尤其是在深度方向上。
在低溫下,金屬的強(qiáng)度提高而塑性則降低。因此,在低溫下光滑試樣的高周疲勞強(qiáng)度比室溫下有所提高,而低周疲勞強(qiáng)度比室溫下低。對(duì)于有缺口的試樣,韌性和塑性降低得更多。缺口和裂紋對(duì)低溫較為敏感,即斷裂時(shí)的臨界疲勞裂紋長(zhǎng)度在低溫下會(huì)急劇減小。
廣義的高溫疲勞是指高于常溫的疲勞現(xiàn)象。但通常情況下,由于有些零件的工作溫度雖然高于室溫,但并不太高。只有當(dāng)溫度高于0.5Tm(Tm為以熱力學(xué)溫度表示的熔點(diǎn)),或在再結(jié)晶溫度以上時(shí),出現(xiàn)了蠕變與機(jī)械疲勞復(fù)合的疲勞現(xiàn)象,這是才稱(chēng)為高溫疲勞。
07 載荷類(lèi)型
不同載荷下疲勞極限的大小順序?yàn)椋盒D(zhuǎn)彎曲<平面彎曲<?jí)嚎s載荷<扭轉(zhuǎn)載荷。在腐蝕介質(zhì)中,加載頻率的裂紋擴(kuò)展的作用比較明顯。在室溫和試驗(yàn)環(huán)境下中,常規(guī)頻率 (0.1~100HZ) 對(duì)鋼和黃銅的裂紋擴(kuò)展幾乎沒(méi)有任何影響。在試驗(yàn)中一般而言,如果試驗(yàn)加載頻率低于250HZ,頻率對(duì)金屬材料的疲勞壽命的影響就較小。
08 材料缺陷
裂紋多萌生于表面,如在焊縫(孔眼)、鑄鋼(疏松)或次表面上(大夾雜改變了局部應(yīng)變場(chǎng)),而很少在內(nèi)部萌生。裂紋萌生還取決于夾雜的數(shù)量、尺寸、性質(zhì)和分布,同時(shí)也與外力的加載方向有關(guān)。此外,夾雜與基體的結(jié)合強(qiáng)度也不容忽視。顯微裂紋是百萬(wàn)周次壽命材料中最危險(xiǎn)的缺陷,顯微曲線則是控制著10億周次壽命材料的壽命。由于微觀尺寸下材料內(nèi)部存在缺陷的幾率遠(yuǎn)大于材料表面,因此超高周疲勞加載時(shí)內(nèi)部萌生裂紋的幾率自然大于表面。
脆性材料不存在應(yīng)力降低或加工硬化現(xiàn)象,一旦出現(xiàn)缺口,在較小的名義應(yīng)力條件下就可能發(fā)生斷裂。經(jīng)驗(yàn)表明,當(dāng)存在缺口時(shí),金屬的疲勞極限降低,并且塑性越差,缺口對(duì)疲勞極限的影響越大。
09 加工方式
文獻(xiàn)中指出,在疲勞試驗(yàn)試樣的制備過(guò)程應(yīng)是導(dǎo)致試驗(yàn)數(shù)據(jù)離散性最重要的環(huán)節(jié),如車(chē)、銑和校直等機(jī)械加工方式都與試樣的最終制備質(zhì)量有關(guān)。正是由于制備方式和熱處理因素會(huì)影響材料的疲勞性能,尤其是熱處理的影響較大,因而即使是同一批次和尺寸、形貌完全相同的試驗(yàn)也很難完全重復(fù)以前的疲勞試驗(yàn)結(jié)果。由此可見(jiàn),工件的生產(chǎn)加工因素會(huì)導(dǎo)致零部件的實(shí)際疲勞壽命偏離分析計(jì)算的期望壽命值。
10 材料屬性
高周疲勞強(qiáng)度(N>106時(shí))與材料的硬度有關(guān),而對(duì)于中低周疲勞,韌性是一種重要指標(biāo)。在高應(yīng)力條件下,高強(qiáng)度鋼由于韌性較差,其疲勞性能較低,而低應(yīng)力情況下,則具有較好的抗疲勞性能。低強(qiáng)度鋼與之相反,中強(qiáng)度鋼居中。一般說(shuō)來(lái)彈性模量越高,裂紋擴(kuò)展速率越低。晶粒尺寸的影響對(duì)裂紋擴(kuò)展的影響僅存在于兩種極端擴(kuò)展的情況:△K→△Kth和△Kmax→△KC,對(duì)中速裂紋擴(kuò)展特性沒(méi)有明顯的影響。斷裂韌性KIC(或KC)與擴(kuò)展速率是相互聯(lián)系的。一般認(rèn)為,蛭石隔熱管托材料韌性的增加會(huì)降低裂紋的擴(kuò)展速度。
疲勞試驗(yàn)數(shù)據(jù)的離散性
試驗(yàn)設(shè)備和試樣本身是造成疲勞試驗(yàn)數(shù)據(jù)(或結(jié)果)離散性的根本原因。據(jù)文獻(xiàn)中分析介紹,在測(cè)定零構(gòu)件的疲勞壽命時(shí),名義載荷相對(duì)實(shí)際載荷有3%的誤差,就會(huì)使疲勞壽命產(chǎn)生60%的誤差,極端情況可能會(huì)導(dǎo)致120%的壽命誤差。而對(duì)于疲勞試驗(yàn)機(jī)來(lái)說(shuō),3%誤差是完全允許的。不過(guò)文中也提到,在靜力破壞試驗(yàn)中,即使對(duì)強(qiáng)度分散性較大的鑄造材料和玻璃等,也不像疲勞壽命那樣存在嚴(yán)重的分散性。
疲勞試驗(yàn)結(jié)果的離散性與材料屬性有關(guān),具體有:材料內(nèi)部的固有特性;試驗(yàn)的制備過(guò)程,試驗(yàn)的外部環(huán)境。其中,試驗(yàn)制備過(guò)程是導(dǎo)致數(shù)據(jù)離散性最重要的環(huán)節(jié),尤其是熱處理。材料內(nèi)的夾雜和第二相顆粒等是造成試驗(yàn)數(shù)據(jù)離散的本質(zhì)原因,目前其作用機(jī)制仍不十分清楚。
結(jié)構(gòu)疲勞設(shè)計(jì)方法的發(fā)展
● 安全壽命法:
設(shè)計(jì)應(yīng)力低于疲勞極限,認(rèn)為結(jié)構(gòu)中無(wú)缺陷。
● 失效安全法:
設(shè)計(jì)應(yīng)力與平面缺陷情況下的剩余強(qiáng)度有關(guān),該設(shè)計(jì)方法允許存在可接受的缺陷。
● 安全裂紋法:
允許存在確定性可預(yù)測(cè)的擴(kuò)展裂紋。
● 局部失效法:
能夠解決金屬疲勞分析中的一些問(wèn)題,目前在法國(guó)廣泛應(yīng)用。20世紀(jì)90年代超高周疲勞試驗(yàn)技術(shù)的興起,充分說(shuō)明一些微觀缺陷(如夾渣、氣孔、鍛造形成的大尺寸晶粒等)對(duì)材料的疲勞壽命也具有重要的影響。
對(duì)于鋼材料,在缺少材料的疲勞試驗(yàn)數(shù)據(jù)時(shí),可由材料的拉伸強(qiáng)度極限做出近似的S-N曲線。把疲勞極限與拉伸強(qiáng)度和試樣斷裂伸長(zhǎng)率聯(lián)系起來(lái)是具有較高精度的一種估算方法。
在材料與結(jié)構(gòu)的疲勞分析中,蛭石隔熱管托要優(yōu)先從試驗(yàn)中得到結(jié)論而不是盲目地相信彈塑性計(jì)算,唯有如此,才能確保數(shù)據(jù)的可靠性。